
<u>1st class</u> Dr. Rasim Azeez

Multiplexer

A multiplexer (mux) is a digital system that selects one out of possible 2ⁿ inputs depending on n select bits. For instance, the truth table and schematic symbol for a 2-to-1 mux are shown below.

symbol of a 2-to-1 mux

And the truth table of (2-to-1) mux is:

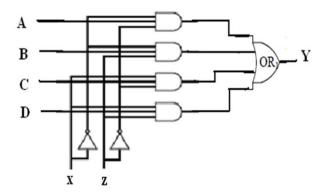
S	В	\mathbf{A}	Y
0	0	0	0
0	0	l	Ì
0	1	0	0
0	1	1	1
1	0	0	0
1	0	l	0
1	1	0	ì
i	1	1	1

The Boolean expression for the output (Y) in terms of inputs A, B and S is:

$$Y = \overline{S}\overline{B}A + \overline{S}BA + SB\overline{A} + SBA$$

$$Y = \overline{S}A(\overline{B} + B) + SB(\overline{A} + A)$$

$$Y = \overline{S}A + SB$$


2 - to - 1 multiplexer

<u>1st class</u> Dr. Rasim Azeez

Larger multiplexers are also common, if you have 4 inputs then you need 2 select bits. This is the reason for the n-select bits mapping 2^n inputs to one output.

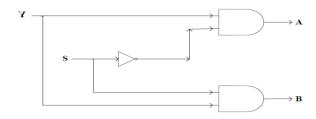
Sele	ctors	Inputs			Output	
X	Z	D C B A			Y	
0	0	0	0	0	0	0
0	0	0	0	0	1	1
0	0	0	0	1	0	0
0	0	0	0	1	1	1
0	0	0	1	0	0	0
0	0	0	1	0	1	1
0	0	0	1	1	0	0
0	0	0	1	1	1	1
0	0	1	0	0	0	0
0	0	1	0	0	1	1
0	0	1	0	1	0	0
0	0	1	0	0	0	0
0	0	1	1	0	1	1
0	0	1	1	1	0	0
0	0	1	1	1	1	1
0	1	0	0	0	0	0
0	1	0	0	0	1	0
0	1	0	0	1	0	1
0	1	0	0	1	1	1
0	1	0	1	0	0	0
0	1	0	1	0	1	0
0	1	0	1	1	0	1
0	1	0	1	1	1	1
0	1	1	0	0	0	0
0	1	1	0	0	1	0
0	1	1	0	1	0	1
0	1	1	0	1	1	1
0	1	1	1	0	0	0
0	1	1	1	0	0	0
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	0	0	0	1	0
1	0	0	0	1	0	0
1	0	0	0	1	1	0
1	0	0	1	0	0	1
1	0	0	1	0	1	1
1	0	0	1	1	0	1
1	0	0	1	1	1	1
1	0	1	0	0	0	0
1	0	1	0	0	1	0
1	0	1	0	1	0	0
1	0	1	0	1	1	0
1	0	1	1	0	0	1
1	0	1	1	0	1	1
1	0	1	1	1	0	1
1	1	0	0	0	0	0
1	1	0	0	0	1	0
1	1	0	0	1	0	0
1	1	0	0	1	1	0
1	1	0	1	0	0	0
1	1	0	1	0	1	0
1	1	0	1	1	0	0
1	1	0	1	1	1	0
1	1	1	0	0	0	1
1	1	1	0	0	1	1
1	1	1	0	1	0	1
1	1	1	0	1	1	1
1	1	1	1	0	0	1
1	1	1	1	0	1	1
1	1	1	1	1	0	1
1	1	1	1	1	1	1

$$Y = \overline{X}\overline{Z}A + \overline{X}ZB + X\overline{Z}C + XZD$$

4 - to - 1 multiplexer

<u>1st class</u> Dr. Rasim Azeez

Demultiplexer


A demultiplexer basically reverses the multiplexing function. It is take data from one line and distribute them to given number of output lines.

The simplest type of demultiplexer is the 1- to- 2 lines DMUX. as shown in Figure below.

Selector	Input	Outputs		
S	Y	В	A	
0	0	0	0	
0	1	0	1	
1	0	0	0	
1	1	1	0	

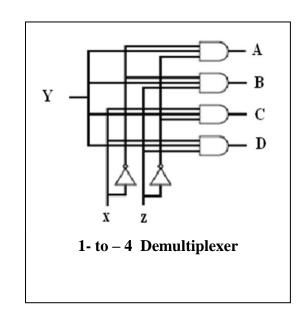
s	A	В
0 1	Y 0	0
l	0	Y

$$A = \overline{S}Y$$
$$B = SY$$

1 to 2 Demultiplexer

Figure below shows a one to four line demultiplexer circuit. The input data line goes to all of the AND gates. The two select lines enable only one gate at a time and the data appearing on the input line will pass through the selected gate to the associated output line.

Truth table of 1- to -4 demultiplexer


X	z	A	В	C	_ D
0	0 1 0 1	Y	0	0	0
0	l	0	\mathbf{Y}	0	0
1	0	0	0	\mathbf{Y}	0
1	1	0	0	0	\mathbf{Y}

$$A = \overline{X}\overline{Z}Y$$

$$B = \overline{X}ZY$$

$$C = X\overline{Z}Y$$

$$D = XZY$$

